

Simplifying surds Getting ready for A-Level Maths...

"The most important investment you can make is in **yourself**."

What is a surd?

A **<u>surd</u>** is the answer to a root (square root, cube root etc) which is an **<u>irrational</u>** number (i.e. it is a non-terminating, non-recurring decimal).

A hegartymaths

$$\int \frac{a}{a} \times \sqrt{b} = \sqrt{a} \times \frac{b}{b}$$
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

Be careful...

$$\sqrt{\frac{a}{a}} + \sqrt{\frac{b}{b}} \neq \sqrt{\frac{a}{a} + \frac{b}{b}}$$
$$\sqrt{\frac{a}{a}} - \sqrt{\frac{b}{b}} \neq \sqrt{\frac{a}{a} - \frac{b}{b}}$$

Important rules Learn by heart...

$1^2 = 1 \times 1$	= 1
$2^2 = 2 \times 2$	= 4
$3^2 = 3 \times 3$	= 9
$4^2 = 4 \times 4$	= 16
$5^2 = 5 \times 5$	= 25
$6^2 = 6 \times 6$	= 36
$7^2 = 7 \times 7$	= 49
$8^2 = 8 \times 8$	= 64
$9^2 = 9 \times 9$	= 81
$10^2 = 10 \times 10$	= 100
$11^2 = 11 \times 11$	= 121
$12^2 = 12 \times 12$	= 144
$13^2 = 13 \times 13$	= 169
$14^2 = 14 \times 14$	= 196
$15^2 = 15 \times 15$	= 225

How to simplify a surd

<u>My turn</u>

Your turn

Simplify $\sqrt{50}$ by writing it in the form Simplify $\sqrt{32}$ by writing it in the form $a\sqrt{b}$ where b is prime. State the values of *a* and *b*.

 $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ 4² = 16 5² = 25 = 36 6² = 49 **7**² = 64 8² $9^2 = 81$ $10^2 = 100$ $11^2 = 121$ $12^2 = 144$ $13^2 = 169$ $14^2 = 196$ $15^2 = 225$

 $a\sqrt{b}$ where b is prime. State the values of *a* and *b*.

<u>My turn</u>

Simplify $6\sqrt{45}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*.

 $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ 4² = 16 = 25 5² = 36 6² = 49 7² = 64 8² $9^2 = 81$ $10^2 = 100$ $11^2 = 121$ $12^2 = 144$ $13^2 = 169$ $14^2 = 196$ $15^2 = 225$

<u>Your turn</u>

Simplify $7\sqrt{99}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*.

<u>My turn</u>

<u>Your turn</u>

A hegartymaths

Simplify $\frac{\sqrt{450}}{3}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*. 1² = 1

> $2^2 = 4$ $3^2 = 9$ 4² = 16 = 25 5² 6² = 36 $7^2 = 49$ = 64 $9^2 = 81$ $10^2 = 100$ $11^2 = 121$ $12^2 = 144$ $13^2 = 169$ $14^2 = 196$ $15^2 = 225$

<u>My turn</u>

Your turn

Show that $\sqrt{27} + \sqrt{192} = a\sqrt{b}$. State the values of *a* and *b*.

Show that $\sqrt{28} + \sqrt{63} = a\sqrt{b}$. State the values of *a* and *b*.

1 ² = 1
2 ² = 4
3 ² = 9
4 ² = 16
5 ² = 25
6 ² = 36
7 ² = 49
8 ² = 64
9 ² = 81
10 ² = 100
11 ² = 121
12 ² = 144
13 ² = 169
14 ² = 196
15 ² = 225

Review Exercise

- **1.** Write down the first 15 square numbers from memory.
- **2.** Simplify $\sqrt{72}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*.
- **3.** Simplify $5\sqrt{63}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*.
- **4.** Simplify $\frac{\sqrt{392}}{2}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*.
- **5.** Show that $\sqrt{32} + \sqrt{128} = a\sqrt{b}$. State the values of *a* and *b*.

Review Exercise (Answers)

- Write down the first 15 square numbers from memory 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225
- **2.** Simplify $\sqrt{72}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*. $6\sqrt{2}$
- **3.** Simplify $5\sqrt{63}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*. $15\sqrt{7}$
- **4.** Simplify $\frac{\sqrt{392}}{2}$ by writing it in the form $a\sqrt{b}$ where *b* is prime. State the values of *a* and *b*. $7\sqrt{2}$
- **5.** Show that $\sqrt{32} + \sqrt{128} = a\sqrt{b}$ where *b* is prime.

State the values of *a* and *b*. $12\sqrt{2}$