宏 hegartymaths

Simplifying surds

Getting ready for A-Level Maths...
"The most important investment you can make is in yourself."

Simplifying surds
 What is a surd?

A surd is the answer to a root (square root, cube root etc) which is an irrational number (i.e. it is a non-terminating, non-recurring decimal).

Simplifying surds

Important rules

$$
\begin{aligned}
\sqrt{a} \times \sqrt{b} & =\sqrt{a \times b} \\
\frac{\sqrt{a}}{\sqrt{b}} & =\sqrt{\frac{a}{b}}
\end{aligned}
$$

Be careful....

$$
\begin{aligned}
& \sqrt{a}+\sqrt{b} \neq \sqrt{a+b} \\
& \sqrt{a}-\sqrt{b} \neq \sqrt{a-b}
\end{aligned}
$$

Learn by heart....

$$
\begin{array}{ll}
1^{2}=1 \times 1 & =\mathbf{1} \\
2^{2}=2 \times 2 & =\mathbf{4} \\
3^{2}=3 \times 3 & =\mathbf{9} \\
4^{2}=4 \times 4 & =\mathbf{1 6} \\
5^{2}=5 \times 5 & =\mathbf{2 5} \\
6^{2}=6 \times 6 & =\mathbf{3 6} \\
7^{2}=7 \times 7 & =\mathbf{4 9} \\
8^{2}=8 \times 8 & =\mathbf{6 4} \\
9^{2}=9 \times 9 & =\mathbf{8 1} \\
10^{2}=10 \times 10 & =\mathbf{1 0 0} \\
11^{2}=11 \times 11 & =\mathbf{1 2 1} \\
12^{2}=12 \times 12 & =\mathbf{1 4 4} \\
13^{2}=13 \times 13 & =\mathbf{1 6 9} \\
14^{2}=14 \times 14 & =\mathbf{1 9 6} \\
15^{2}=15 \times 15 & =\mathbf{2 2 5}
\end{array}
$$

Simplifying surds

How to simplify a surd

$\sqrt{20}$

Simplifying surds

My turn

Simplify $\sqrt{50}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and b.

Your turn

Simplify $\sqrt{32}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and b.

$$
\begin{array}{|l}
1^{2}=\mathbf{1} \\
2^{2}=\mathbf{4} \\
3^{2}=\mathbf{9} \\
4^{2}=\mathbf{1 6} \\
5^{2}=\mathbf{2 5} \\
6^{2}=\mathbf{3 6} \\
7^{2}=\mathbf{4 9} \\
8^{2}=\mathbf{6 4} \\
9^{2}=\mathbf{8 1} \\
10^{2}=\mathbf{1 0 0} \\
11^{2}=\mathbf{1 2 1} \\
12^{2}=\mathbf{1 4 4} \\
13^{2}=\mathbf{1 6 9} \\
14^{2}=\mathbf{1 9 6} \\
15^{2}=\mathbf{2 2 5}
\end{array}
$$

Simplifying surds

My turn

Simplify $6 \sqrt{45}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and b.

Your turn

Simplify $7 \sqrt{99}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and b.

$$
\begin{array}{|l}
\hline 1^{2}=\mathbf{1} \\
2^{2}=\mathbf{4} \\
3^{2}=\mathbf{9} \\
4^{2}=\mathbf{1 6} \\
5^{2}=\mathbf{2 5} \\
6^{2}=\mathbf{3 6} \\
7^{2}=\mathbf{4 9} \\
8^{2}=\mathbf{6 4} \\
9^{2}=\mathbf{8 1} \\
10^{2}=\mathbf{1 0 0} \\
11^{2}=\mathbf{1 2 1} \\
12^{2}=\mathbf{1 4 4} \\
13^{2}=\mathbf{1 6 9} \\
14^{2}=\mathbf{1 9 6} \\
15^{2}=\mathbf{2 2 5}
\end{array}
$$

Simplifying surds

My turn

Simplify $\frac{\sqrt{450}}{3}$ by writing it in the form Simplify $\frac{\sqrt{288}}{4}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values $a \sqrt{b}$ where b is prime. State the values of a and b. of a and b.

$$
\begin{aligned}
& 1^{2}=\mathbf{1} \\
& 2^{2}=\mathbf{4} \\
& 3^{2}=\mathbf{9} \\
& 4^{2}=\mathbf{1 6} \\
& 5^{2}=\mathbf{2 5} \\
& 6^{2}=\mathbf{3 6} \\
& 7^{2}=\mathbf{4 9} \\
& 8^{2}=\mathbf{6 4} \\
& 9^{2}=\mathbf{8 1} \\
& 10^{2}=\mathbf{1 0 0} \\
& 11^{2}=\mathbf{1 2 1} \\
& 12^{2}=\mathbf{1 4 4} \\
& 13^{2}=\mathbf{1 6 9} \\
& 14^{2}=\mathbf{1 9 6} \\
& 15^{2}=\mathbf{2 2 5}
\end{aligned}
$$

Simplifying surds

My turn

Show that $\sqrt{27}+\sqrt{192}=a \sqrt{b}$. State the values of a and b.

Your turn

Show that $\sqrt{28}+\sqrt{63}=a \sqrt{b}$. State the values of a and b.

Simplifying surds
 Review Exercise

1. Write down the first 15 square numbers from memory.
2. Simplify $\sqrt{72}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and b.
3. Simplify $5 \sqrt{63}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and b.
4. Simplify $\frac{\sqrt{392}}{2}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the vaiues of a and b.
5. Show that $\sqrt{32}+\sqrt{128}=a \sqrt{b}$. State the values of a and b.

Simplifying surds

Review Exercise (Answers)

1. Write down the first 15 square numbers from memory $1,4,9,16,25,36,49,64,81,100,121,144,169,196,225$
2. Simplify $\sqrt{72}$ by writing it in the form $a \sqrt{b}$ where b is prime.

State the values of a and $b .6 \sqrt{2}$
3. Simplify $5 \sqrt{63}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the values of a and $b .15 \sqrt{7}$
4. Simplify $\frac{\sqrt{392}}{2}$ by writing it in the form $a \sqrt{b}$ where b is prime. State the vaiues of a and $b .7 \sqrt{2}$
5. Show that $\sqrt{32}+\sqrt{128}=a \sqrt{b}$ where b is prime.

State the values of a and $b .12 \sqrt{2}$

