戻 hegartymaths

Rationalising surds (2)

Getting ready for A-Level Maths...

"The most important investment you can make is in yourself."

Rationalising surds (2)

Difference of two squares

$$
\begin{aligned}
& (a+b)(a-b)=a^{2}-b^{2} \\
& (2+\sqrt{5})(2-\sqrt{5}) \\
& (6-4 \sqrt{2})(6+4 \sqrt{2})
\end{aligned}
$$

Rationalising surds (2)

My turn

Rationalise the following giving your answer in the form $a+b \sqrt{3}$. State a and b.

$$
\frac{4}{1+\sqrt{3}}
$$

Your turn

Rationalise the following giving your answer in the form $a+b \sqrt{7}$. State a and b.

$$
\frac{18}{1+\sqrt{7}}
$$

Rationalising surds (2)

My turn

Rationalise the following giving your answer in the form $a+b \sqrt{2}$. State a and b.

$$
\frac{2}{3-\sqrt{2}}
$$

Your turn

Rationalise the following giving your answer in the form $a+b \sqrt{5}$. State a and b.

$$
\frac{2}{4-\sqrt{5}}
$$

Rationalising surds (2)

My turn

Rationalise the following giving your answer in the form $a+b \sqrt{5}$. State a and b.

$$
\frac{12}{-1+\sqrt{5}}
$$

Your turn

Rationalise the following giving your answer in the form $a+b \sqrt{11}$. State a and b.

$$
\frac{20}{-3+\sqrt{11}}
$$

Rationalising surds (2)

My turn

A rectangle has an area $(2+\sqrt{2}) \mathrm{cm}^{2}$ and a width of $(3 \sqrt{2}-4) \mathrm{cm}$. Find the length and state your answer in the

Your turn

A rectangle has an area $(15-6 \sqrt{3}) \mathrm{cm}^{2}$ and a width of $(2 \sqrt{3}-3) \mathrm{cm}$. Find the length and state your answer in the form $a+b \sqrt{2}$ where a and b are integers. form $a+b \sqrt{3}$ where a and b are integers.

Rationalising surds (2)

Review Exercise

1. Rationalise the following giving your answer in the form $a+b \sqrt{5}$.

State a and b.

$$
\frac{24}{1+\sqrt{5}}
$$

2. Rationalise the following giving your answer in the form $a+b \sqrt{6}$.

State a and b.

$$
\frac{2}{5-\sqrt{6}}
$$

3. Rationalise the following giving your answer in the form $a+b \sqrt{7}$. State a and b.

$$
\frac{18}{-2+\sqrt{7}}
$$

4. A rectangle has an area $(10+4 \sqrt{3}) \mathrm{cm}^{2}$ and a width of $(3 \sqrt{3}-5) \mathrm{cm}$. Find the length and state your answer in the form $a+b \sqrt{3}$ where a and b are integers.

Rationalising surds (2)
 Review Exercise (Answers)

1. Rationalise the following giving your answer in the form $a+b \sqrt{5}$.

State a and $b \cdot \frac{24}{1+\sqrt{5}} \quad$| $-6+6 \sqrt{5}$ |
| :--- |
| $a=-6, b=6$ |

2. Rationalise the following giving your answer in the form $a+b \sqrt{6}$.

State \boldsymbol{a} and \boldsymbol{b}.

$$
\frac{2}{5-\sqrt{6}}
$$

$$
\begin{aligned}
& \frac{10}{19}+\frac{2}{19} \sqrt{6} \\
& a=\frac{10}{19}, b=\frac{2}{19}
\end{aligned}
$$

3. Rationalise the following giving your answer in the form $a+b \sqrt{7}$.

State \boldsymbol{a} and \boldsymbol{b}.

$$
\frac{18}{-2+\sqrt{7}}
$$

$$
\begin{aligned}
& 12+6 \sqrt{7} \\
& a=12, b=6
\end{aligned}
$$

4. A rectangle has an area $(10+4 \sqrt{3}) \mathrm{cm}^{2}$ and a width of $(3 \sqrt{3}-5) \mathrm{cm}$. Find the length and state your answer in the form $a+b \sqrt{3}$ where \boldsymbol{a} and \boldsymbol{b} are integers.

$$
43+25 \sqrt{3}
$$

